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Abstract-In this paper the heat-transfer problem of a conducting liquid (forced convection) in a 
circular pipe under a transverse magnetic field is studied when the walls of the pipe are kept at a 
constant axial tem~ratur~ gradient. The mean temnerature and the Nusselt numbers are presented 

for~smali values of the Hartmann number and are shown graphically. _ 

NOMENCLATURE 

constant axial temperature gradi- 
ent ; 
radius of the pipe; 
uniform transverse magnetic field; 
modified Bessel function of first 
kind and nth order * 
half the Hartmann’number; 
thermomet~c conductivity; 
fluid thermal conductivity ; 

Hartmann number = pf-f,u fl ’ ; 
0 ? 

Nusselt number; 
dimensionless axia1 pressure gradi- 
ent ; 
Peclet number ; 
radial co-ordinate; 
dimensionless radial co-ordinate; 
temperature of the fluid ; 
mean temperature of the fluid ; 
temperature of the wall; 
the mean veIocity of the fluid; 
axial component of fluid velocity; 
dimensionless axial component of 
fluid velocity; 
axial co-ordinate; 
dimensionless axial co-ordinate; 
density of the fluid ; 
permeability of the magnetic field; 
electric conductivity of the fluid; 
coefficient of viscosity of the fluid; 
kinematic coefficient of viscosity 
of the fluid ; 
circumferential co-ordinate, 

INTRODUCTION 

THE study of heat transfer for an electrically 
conducting fluid under the influence of a magnetic 
field is now considered of significant importance 
due to its application in many engineering prob- 
lems such as the magneto-hydrodynamic gener- 
ator, plasma studies, rmclear reactors and those 
dealing with liquid metals. These applications 
approximate to a linearly varying wall tempera- 
ture or uniform heat flux rather than a uniform 
wall temperature. Nusselt [I] was the first to 
discuss the problem of heat transfer for the non- 
magnetic case in Poiseuille flow for uniform wall 
heat flux. Seigel [2] has solved the similar 
problem for a parallel plate channel correspond- 
ing to a Hartmann velocity profile for the 
magnetic case. Nigam and Singh [3] have 
studied the same problem when the plates are 
kept at a uniform temperature. However the 
problem for a circular pipe is more important 
from a practical point of view. 

In the present paper, the problem of heat 
transfer for the fully developed laminar flow 
through a circular pipe for an electrically con- 
ducting, incompressible, viscous fluid, under 
the action of a uniform transverse magnetic 
field is presented when the walls of the pipe are 
kept at a constant temperature gradient. The 
heat generated due to viscous and electric dissi- 
pation is neglected. It is assumed that even with 
a moderate velocity the difference in the wall 
temperature and fluid temperature is small 
enough to permit the neglect of buoyancy force 
in comparison with inertia and frictional forces 
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It is found that the mean temperature in- 
creases and the Nusselt number increases as the 
intensity of the applied magnetic field is in- 
creased. Similar results have already been 
obtained by Nigam and Singh [3] in case of 
Hartmann flow for a flat plate. It is also noted 
that the mean temperature and the Nusselt 
number both decrease as 0 increases from zero 
to rr/2. The results are consistent with the con- 
clusions drawn by Singh and Nariboli [4] that 
the velocity profiles for 0 = 0 are nearly identical 
with those obtained by Hartmann in case of 
flow through parallel plates under transverse 
magnetic field, and for 0 = n/2 they are of 
parabolic nature. 

STATEMENT OF THE PROBLEM AND 

DIFFERENTIAL EQUATION 

Consider a viscous, incompressible, electric- 
ally conducting and heat conducting fluid in a 
fully developed laminar flow through an infinite 
circular pipe of radius a, under the action of a 
constant pressure gradient, represented non- 
dimensionally by P,, in the direction of motion 
and a constant transverse magnetic field Ho. 
The walls of the pipe are kept at a constant axial 
temperature gradient A. Fig. 1 shows the con- 
figuration and co-ordinate system and Fig. 2 is 
the cross-section of the pipe showing the mag- 
netic lines of force. 

equation (2) becomes 

Assuming the temperature distribution T of the 
form 

The problem of velocity distribution in this case 
has already been solved by Shercliff [5], Uhlen- 
busch and Fisher [6], Ufyland [7], Gold [8] and 
Singh and Nariboli [4]. The expression for the 
axial velocity component [4] is given as 

T = AZ ;- g(r, 0) (5) 

with the condition 

g(l,H) L- 0; (6) 

and substituting in equation (4), the differential 
equation 

is obtained, with the boundary condition 

+ 2 $ a,I, (kr) cos n0 ecLr cos o 
n-1 

+ 2 2 (- l)n a,I, (kr) cos n0 ekr cos @, (1) 
n=l 

where 
dI, (k) 

an = -dk- In(k). 
I 

The energy equation for the associated heat- 
transfer problem [9] simplifies to 

FIG. 1. Configuration and co-ordinate system. 

The terms due to viscous dissipation and electric 
dissipation are neglected. 

Introducing the dimensionless variables z, r 
and w defined by 

(4) 

I 

(2) 
FIG. 2. Cross section showing the magnetic line of 

force. 
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The mean tem~rature and the Nusselt number The solution of this equation will be of the form 
are defined as 

g = 5 fm (r) cos m8. (11) 
II=1 

Nu=-2K ; 
0 I 

(9) With this value of g, the equation (10) becomes 

K(Tm - Tw). 
O3 r-1 1 dBS, (r) 1 dfm (4 

dr8-'; dr 
MATHEMATICAL SOLUTION CL 

- - $ fm (r)] cos m8 
m=O 

Substituting the value of w in (7), the differ- 
ential equation becomes 

a*g i ag i sag PoPeA 
$s+;~+&j@=--&~- 

{a& (kr) (e--#r co8 * + ekr cos u, 

+ 2 2 a,Z, (kr) cos n8 

PoPeA 
= 4k [fr& (kr) (e-kr Co8 * + e&r COf3 @) 

+ 2 5 a,Z, (kr) cos n8 c+’ COB @ 
n-l 

+ 2ga,(-l)~Z~(kr)cosnBe*rCo~~].(12) 
n=l 

n=l Multiplying the equation (12) by cos m8 and 
[e-krcose + (-l)n ekrcos~]}, (10) integrating between the limits 0 to 7, 

for even m. When m is odd, the expression for the right-hand side vanishes. 
The boundary condition becomes 

fm (r) = 0 at r = 1, m = 0,2,4,6, . . . 

For m = 0, equation (13) becomes 

(14) 

Integrating twice with respect to r and using the finiteness condition at r = 0 and the boundary 
condition (14),~(r) is obtained as [Appendix (i)] 

tl%Z: W - 21: W) + Z. (4 & (kr)l rB - [Zi (k) - 21: (k) + Z, (k) Z, (k)]> 

m 

- c C-1)” 2 {[I~+, (kr) - Zw (kr) L (kr) - Zi (kr) + Zntl (kr) Znml (kr)] ra 
n=l 

- [Zz+, (k) - Zn+a (k) Zn (k) - Zz (k) + Zn+l (k) In-1 @)I} 

[(kr/2)aS+Bn+* - (k/2)@+a*+a] (2n + 2~ + l)! 
@fs+ l)!(n+s+ l)~(~+~)!~!~~+~+~ * 

s-0 
06) 
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For non-zero values of m, the solution of equation (13) is obtained by the method of variation 
of parameters and the two constants of integration are determined by the finiteness condition 
at r -- 0 and the boundary condition (14). Thus [Appendix (ii)] 

PeP,A 
.&(r) L -.- ~-- -- 

4km (rn2 - 1) 
{ aor [(m -+ 1) II (kr) 1,-l (kr) -+ (117 1) II (kr) I,, 1.1 (kr) .--- 2m IO (kr) Im (kr)] 

2177 I?~-~ (kr) In (kr)] - g (- 1) anrm [(m + 1) L+n-l (k) {,,~I I Ck) 

+ (fn + 1) I,-?,-, (k) In-1 (k) + (m -- 1) hntn+1 (k) Zn--1 (k) i- (In -- 1) Im-,+, (k) In.+1 (k) 

- 2/n zm+n (k) In (k) - 2~ rm-, (k) In &)I 1. (17) 

And hence, 

T = AZ t_ 5 j&(r) cos n-10, (18) 

where m is an even integer and fO (r), h (r), f4 (r), . . . etc. are given by equations (16) and (17). 
In the limiting case as k tends to zero, the temperature distribution T approaches the value 

for the non-magnetic case given by Nusselt [I] as 

PoPeA 3 

L 

r2 r4 
Az ~~~ ~2~ is _~ 4 _I_ 16 1 . 

The mean temperature and the Nusselt number have been calculated by expanding the 
temperature distribution T as a polynomial in kr and retaining the terms only up to sixth 
degrees in kr. The value of Trn is obtained [Appendix (iii)] as 

7(k/2)l 13(k/‘2)” 
~~~ 
64 

-t- -400 
I 

(19) 

(20) 
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The Nusselt number is given by [Appendix (iv)] NU = -N/D, where 

N = ao 
i 
1 + (WY + (WY + 158 (k/2)6] - a, [(k/2)2 + ; (k/2)4 + ; (k/2Y] 

+ a 

[ 

(k/2)” (k/2)” 
2 

.-..6- _ + 12~~ ] pg?] _ a, 

cos 28 

+- 12 + [ 
a0 2(k/2)2 + 2(k/2)” + a (k/2)R] -- a, 14(k/2)2 -I- i (k/2)* + ii (k/2)6] 

+ a, 
[ 
2(k/2)2 + 2(k/2)* + $f%/2)6] - a3 [(!!fj: + i (k/2)“] + a4 pgC] 1 

+ c~2~~ {a0 [(k/2)4 + (k/2)“} - al b/2)* + g (k/2)6] + a, [6(k/2)” + !i (/~/2)~] 

; (klZ)fi] -I- a4 [(WQ4 + (ki2Yl) 

(k/2)* 5 
a, -?-- - + 4 a2 (k/2)fi - : a3 (k/2)6 + i a4 (k/2)6] (21) 

and D is given by equation (20). 
The Nusselt number also tends to 6 as k + 0 

in agreement with the result given by Nusselt [I]. 

CONCLUSIONS 

The mean mixed temperature and the local 
Nusselt numbers are calculated for small values 
of the Hartmann number M = 0.8, 2,2+ and 4, 
correct to the third decimal place. These results 
are based on the expansion of the modified 
Bessel functions in ascending powers of kr up to 
sixth degree and are valid only for small values 
of t?. For large values of k, the asyinptotic 
expansion of the modified Bessel functions should 
be used. As the Hartmann number varies from 
O-8 to 4. the mean temperature increases from 
-0.041 + AZ to -0.031 + AZ. For M == 0.8 
there is no appreciable variation in the Nusselt 
numbers for different values of 0, but for other 
values of M, they go on decreasing with the 
increase of 8. But for the same value of 8, the 
Nusselt numbers increase with M. Fig. 3 is the 
plot of the Nusselt number against 0 for different 
values of M. At P =:= 0 the Nusselt number for 
different values of M, matches with the values 
calculated from Seigel’s [2] result. For example, 
at M =: 2, the Nusselt number in case of flat 
plate [2] is 6.92 whereas in this case the corre- 

sponding Nusselt numbers at B = 0 and B = zj2 
are 6.7 and 6.5 respectively. Hence this shows 
that the temperature profiles at 0 = 0 are 
similar to those for a flat plate and those at 
8 = V/Z are of parabolic nature. 

The problem, when the walls of the tube are 
kept at constant temperature [3] will be presented 
in the next communication. 
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APPENDIX 

(i) Integration of equation (15) with respect to Y 
[[lo], equations (164) and (193), pp. 201 and 
2037 is 

r [ii (kr) - ZT (kr)] 

r Zf, (kr) - r I?.,, (kr) 

- ; 1, (kr) Z;,, (kr) , 
(22) 

where BI is the constant of integration. 
Substituting the value of 1, (kr) Zn+l (kr) from 

Watson [ll, equation (5.40, 51, p. 1471, the 
equation becomes 

df@(r) PO PeA -- = --- 
dr k 

+ 2 m (- 1)” [Z; (W - I~_+, WI1 
n=l 

m 24z,(-l)nrz - c k + (23) 
0=l 

m 

c 

(kr/2)aa+2n+1 (2s $- 2n + 1) ! _I_-- ___- 
(2n+s+ l)!(n$ s+ l)!(n+s)!s! 

s=o 

Again integrating (23) with respect to r, f. (r) is 
obtained. B, is zero due to finiteness condition 
at r = 0, and the boundary condition (14) gives 
the value of the other constant C. Substitution 
of this value of constant in the integrated equa- 
tion, gives (16). 

where R stands for the ~ght-and side of (13). 
By the method of variktion of parameters, the 

solution is obtained in the form 

fm (r) = plrm + CWrn 
where 

wntten as 

J r-tm+l) R & 
PI = 

2m + 43 1 
rfm-1) Rdr (25) 

Q, = - s 2m i- C, 
(ii) When m is not zero, equation (13) can be 

13.8 

13.6 

6-7 

66 

6.5 

64 

6.3 

6,2 

6.1 

6 

No against, @- 

FIG. 3. 

Phrn dfm 
(24) 
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and Z3% and C, are constants of integration. 
To evaluate P1 and Ql the following integrals 

are derived. 
The results 

+ (A + u + 0) xA-lru (x) Iv (x). 

and 

(26) 

4 rw,, (x)Zv(x)] i- (A - u - t' - 2) 

xh-l z74+1 (x) Iv+1 (x) (27) 

which are obtained by equations (164) and (165), 
p, 20, McLachlan [IO], when subtracted, give 

$ W [ZU G) Z%+ (x) - ZWl (x) J2’t-I WI) 

= (A + u + 0) xh-1 I, (x) z, (x) 

-(X-u-0-2) xh-l Z?&+1 (x) Zv+r 0. 

(28) 

Integrating and giving special values to /\, 
i.e., h = - (U + v) and h = (U + v + 2), the 
integrals are obtained, 

J x“+“+l Z, (x) Zu (x) dx 

= ZU (x) ZV W - ZU+l W Zv+1 (x)x?l+v+p 
2@ + u + 1) 

sx --p1--*+l Z, (x) Z, (x) dx 
(29) 

If R is written as 

‘+A {ao Zo (kr) I-m (kr) +&z, (-- l)n 

I?, UN L+n (kr) + Zn (kr) I,-, (kr)]} 

in equation (25), the value of PI and Q, can be 
determined directly using the two integrals (29) 
for~=O,-~~nandv=m~m~na~drn-~, 

The constants are determined by the finiteness 
condition at r = 0 which gives C, = 0 and the 
condition (14) which determines 3,. And thus 
fm (r) is obtained in the form of equation (17). 

(30) (iii) Tm = J z” JJ 1 Tr dr df?. 

1 277 1 
=_- JJ 

a, 

= II 
2: rfm (r) cos m9 dr d0 + AZ 

0 m=O 

(31) 

4’ m 
=- 

r J o m~;fm(W + AZ, (32) 

where fm (r) is known as the product of two modi- 
fied Bessel functions in the form ZP (kr) x I(&) 
which can be written in ascending powers of 
kr by the expansion 

ZP (kr) Zq (kr) 
03 

=c (kr/2)pi@S (p + q + 2s)! 
(p+q+sj!(p+s)!(q+s)is!’ (33) 

s=o 

Giving special values to p and q from equation 
(17) and retaining the terms up to sixth degree 
in kr in the expanded series, the value of fm (r) is 
known as a polynomial in kr. Substituting this 
value of fm (r) in (32), and then integrating, the 
value of Tm is determined as given by (19) and 
(20). 

BT 
(iv) Nu = -2K - 0 I ar 2=1 K @‘rn -- Tw) (34) 

PoPeA 
---xx, 

k (35) 

as TW = AZ, and D is given by equation (20). 
But, 

where fm (r) can be expanded in ascending powers 
of kr as in (iii) above and can be written as a 
polynomial of sixth degree in kr. Differentiating 
term by term, the value of dfm (r)/dr can be cal- 
culated at r = 1. Substituting this value in (35) 
the value of Nusselt number is determined as in 
equation (21). 
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Zu~rn~nf~un~-~~r W~rme~~rgang in einer elektrisch leitenden Fliissigkeit (Zwangskonvek~ion) 
in cinem Kreisrohr mit radial angelegtem Magnetfeld wird untersucht. Dabei weisen die RohrwSnde 
einen konstanten, achsialen Tem~ratur~ad~enten auf. Die mittlere Temperatur und die Nusselt- 

Zahlen sind fiir kleine Werte der Hartmann-Zahl angegeben und grafisch dargesteilt, 


